H=

Hands(On Training

Intel FPGA Technical Training

Intel FPGA Designer Program

Course Description

This training program provides all necessary theoretical and practical know-how to
design Intel FPGA using Verilog standard language and Quartus Prime software tools.

The course intention is to train computer and electronics engineers from scratch to a
practical work level.

The course goes into great depth, and touches upon every aspect of the Verilog
standard and Intel FPGA design with directly connected to the topics needed in the
industry today.

The course combines 50% theory with 50% practical work in every meeting with
Terasic DEO-CV evaluation board. The practical labs cover all the theory and also
include practical digital design. The program provides extra labs/mini projects for
homework between meetings.

The first part of the program (5 days) begins with an overview of the current
programmable logic devices and their capabilities, continues with an in-depth study
of Verilog language with all of its structures, involves writing test-bench programs
and employ a simulation tool.

The second part of the program (7 days) starts with an overview of Quartus Prime
features, projects types and management, design methodology, and using IP cores
from the IP catalog. Qsys system integration tool, state machine editor, memory
editor, Altera SD for OpenCL, and DSP Builder are also introduced in high level. The
course continuous with Quartus Prime compilation flow, incremental compilation
concept, working with messages, viewing compilation reports, RTL and technology
views, state machine viewer, and how to use the chip planner tool, I/O planning with
the pin planner, with the BluePrint Platform Designer, and programming and
configuration of FPGA. In addition attendee will learn how to write code for
synthesis and employ recommended digital design practices.

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

H=

Hands(On Training

The course also teaches the TimeQuest Tool, how insert timing constraints, analyze
design timing issues and solve them, and how to debug the design on board use
various debugging tools.

The third part of the program (3 days) covers advanced digital design concepts and
optimizations. The training teaches how to design multiple-clock domains with
various synchronization techniques, and measure the MTBF of the solution in
TimeQuest. In addition this part teaches how to increase design frequency with
pipeline techniques, physical synthesis, fast arithmetic algorithms, and methods to
decrease design area with resource & functionality sharing techniques.

At the end of the program engineers will feel confidence to design simple & complex
FPGA projects by their own.

Course Duration
15 days: Verilog (5 days), Quartus Prime (7 days), Optimization (3 days)
Goals

Become familiar with Intel FPGA/CPLD families and their capabilities

Noe

Understand the design process from specification up to programming and
final verification on board

Implement combinational and sequential processes

Build a hierarchy (bottom-up and top-down)

Write test-benches

3

4

5

6. Understand coding style considerations for synthesis

7. Become familiar with TimeQuest and sdc files to insert timing constraints

8. Employ efficient design methodologies for high frequency or minimal area

9. Configure and embed IP in the design

10. Produce and analyze reports

11. Identify and fix timing issues

12. Utilize the FPGA architecture in the most efficient way with proper RTL
coding style

13. Design pipeline circuits with an emphasis on latency and throughput

14. Close design timing and optimize critical path

15. Configure and use PLL in the design

16. Design a reliable multi-clock domains system with synchronization circuits

17. Design a reliable reset circuits

18. Optimize the design with synthesis and Place & Route tools

19. Program the FPGA on board

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

H=)

HandsOn Training
20. Use SignalTap I, SignalProbe, and other on-board verification tools

Intended Users

Hardware engineers who would like start developing projects based on Intel FPGAs
System and computer engineers who would like to upgrade their professional skills
Previous Knowledge

A basic background in digital logic

Course Material

Simulator: Modelsim

Synthesizer and Place & Route: Quartus Prime
Terasic Evaluation board DEQ-CV

Course book (including labs)

Hw N

When innovation meets expertise...

H=

Hands(On Training

Table of Contents

Part | — Verilog Package (5 Days)

Day #1

¢ Introduction to Programmable Logic Devices
0 CPLD architecture and design consideration
0 FPGA architecture

= LUT

= FF

= PLL

= DSP Block

= Embedded RAM
= Embedded Processor
= FPGA Programming process

¢ Introduction to Verilog Language
0 Verilog history
0 Digital design
0 FPGA design flow
= Simulation
= Synthesis
= Place & Route
= Programming
= Verification
0 Advantages of Verilog
Simulation & Synthesis

o

0 Demonstration of whole process on board

e Hierarchical Modeling Concept
0 Top down and bottom up
0 Modules
0 Instances
0 Components of a simulation
0 Design example of a counter

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

Hands(On Training

¢ Introduction to Verilog — Basic Concepts

0 Lexical conventions (white space, comments, operators, number
specification, unsized numbers, X or Z values, negative numbers,
underscore characters and question marks, strings, identifiers and
keywords, escaped identifiers)

0 Data types (value set, nets, registers, vectors, integer, real, time
register, arrays, memories, parameters, strings)

0 System tasks and compiler directives (displaying information,
monitoring information, stopping and finishing in simulation, compiler
directives)

e Modules and Ports

0 Modules

0 Ports

0 Port connection rules (inputs, outputs, inouts, width matching,
unconnected ports)

0 Connecting ports to external signals (connected by ordered list,
connecting ports by name)

0 Hierarchical names

Day #1 Labs

+* Lab #1: Become Familiar with the Evaluation Board and Verilog
Starting a new project in Quartus Prime

Design entry using Verilog code (switches and led)

Simulating the design circuit

Compiling the designed circuit

Pin assignment

O O 0O 0O 0O O

Programming and configuring the FPGA device

+* Lab #2: Building Hierarchy
Given a 3-bits binary adder design, simulate the design
0 Design a 7-bit binary adder circuit using only 3-bits binary adder
components
0 Design a 7-segment decoder circuit to display the adding result on the
board

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

H=

Hands(On Training

Simulate the design
Compile the design
Pin assignment

O ©0 O O

Programming and configuring the FPGA device

Day #2
e Gate Level Modeling

0 Gate types (and/or gates, buf/net gates, array of instances)
O Gate delays (rise, fall, turn-off, min/typ/max values)

e Dataflow Modeling

0 Continuous assignments (implicit continuous assignment, implicit net
declaration)

0 Delays (regular assignment delay, implicit continuous assignment
delay, net declaration delay)

0 Expressions, operators and operands

0 Operator types (arithmetic, logical, relational, equality, bitwise,
reduction, shift, concatenation, replication, conditional, operator
precedence)

Day #2 Labs

¢ Lab #1: Dual Priority Encoder
0 Design a dual-priority encoder that returns the codes of the highest or
second highest priority requests
Design the circuit in Verilog
Write a testbench and simulate the design
Inputs for the encoder will use the switches
Display the two output codes on the 7-segments LED

O O 0O O O

Compile the design, program the FPGA and verify its operation on board

++ Lab #2: Arithmetic Logic Unit (ALU)
0 Implement in Verilog 4-bit ALU with the following operations: add, sub,
and, or, not a, not b
0 The ALU should also produces zero and carry out flags

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

Hands(On Training

Simulate the design
Inputs for the ALU will use the switches
Display the two output codes on the 7-segments LED

O O O O

Compile the design, program the FPGA and verify its operation on board

Day #3

e Behavioral Modeling

0 Initial statement (combined variable declaration and initialization,
combined port/data declaration and initialization, combined ANSI C
style port declaration and initialization)
Always statement (always block)
Blocking assignments
Non-blocking assignments

O O O O

Timing controls (delay based, regular delay control, intra-assignment,

zero delay control, event-based timing control, named event control,

event OR control, level sensitive timing control)

0 Conditional statements (if-else, case, casex, casez, while loop, for
loop, repeat loop, forever loop)

0 Sequential and parallel blocks (block types, parallel blocks, nested
blocks, named blocks, disabling named blocks)

0 Generate blocks (generate loop, genvar, generate conditional,

generate case)

Day #3 Labs

¢ Lab #1: Counter Design
0 Develop an up-down 6-bit counter with a load and reset option that can
count up-to 32
0 When load = ‘1’ then on the rising edge of the clock, 6-bits input data is
loaded into the counter which keep counting from this new value
0 If the maximum count is reached, then a 1-bit signal MAX is set high

o

If the counter reaches zero, then a 1-bit output signal MIN is set high
0 In either case the counter will stop until the direction of the counter is
changed

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

H=

Hands(On Training

++ Lab #2: Using Loop Statement and a ROM

Count the number of Zeros in the Odd indices of a 64-bit array
Vector inputs will be read every clock from a 8x64 ROM

Use Quartus IP catalog to instantiate a ROM in your Verilog program
Read a new vector from the ROM on every rising edge clock
Simulate the design

Display the result on 7-segment led

O O 0O OO0 O O

Compile the design, program the FPGA and verify its operation on board

Day #4

e Tasks and Functions
0 Differences between tasks and functions
0 Tasks (task declaration and invocation, task examples, automatic
tasks)
0 Functions (function declaration and invocation, function examples,
recursive functions, constant functions, signed functions)

¢ Modeling Finite State Machines
0 FSM concept
0 Mealy & Moore Models
0 Verilog coding style
0 State encoding
= Sequential

= Johnson
= One Hot
= Two Hot

= Defined by user

= Defined by synthesis
0 Handling the unused states
Reset & Fail Safe Behavior
0 Interactive State Machines

o

= Unidirectional
= Bij-Directional

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

Hands(On Training

e Useful Modeling Techniques
0 Procedural continuous assignments (assign and deassign, force and
release)
0 Overriding parameters (defparam statement, module_instance
parameter values)
0 Conditional compilation and execution
Time scales

o

0 Useful system tasks (file output, Sfopen, Sfdisplay, Sfwrite, Sfmonitor,
Sfstrobe, display hierarchy, strobing, random number generation,
initializing memory from file, value change dump file)

Day #4 Labs

+»+ Lab #1: Sorting Algorithms
0 Write a function that for a given array with 2n+1 integer elements, n
elements appear twice in arbitrary places in the array and a single integer
appears only once somewhere inside, finds the lonely integer
0 For example: for the array input 3,5,4,4,3 the function should output 5
0 Write an application with a call to your function in order to test it

¢ Lab #2: Verify State Machine Behavior
0 Given the code for the state machine and testbench template, complete
the testbench with declaration of 4x16 array in order to test 4 different
test cases
0 Write a process read each clock one bit and inject it to the FSM
= After each array cell completion, you need to test the FSM from
the beginning (each test vector is independent from the others)
O Given LFSR code, add it to your testbench and create a mechanism to
inject each clock one bit to the FSM

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

H=

Hands(On Training

Day #5

¢ Timing and Delays

0 Distributed delay

0 Lumped delay

0 Pin-to-pin delays

0 Path delay modeling (specify blocks, parallel connection, full
connection, edge sensitive paths, specparam statements, conditional
path delays, rise, fall and turn-off delays, min, max and typical delays,
handling x transitions)

0 Timing checks (Ssetup and Shold checks, Swidth check)

e User Defined Primitives (UDP)
0 UDP basics (parts of UDP definition, UDP rules)
0 Combinational UDPs (definition, state table entries, shorthand
notation for don’t cares, instantiating UDP primitives)
0 Sequential UDPs (definition, level sensitive, edge sensitive)
0 Guidelines for UDP design

¢ Introduction to Synthesis
0 What is Synthesis
0 Synthesis tools
0 Verilog programs for synthesis versus for simulation
0 Coding style and pitfalls
0 Demonstration

Day #5 Labs

++ Lab #1: Final Exercise

0 Sort multiple buses via priority vector and output them according to the
specification. You will be restricted by maximum latency allows and circuit
size

0 You have to synthesize your code and verify functionality through
simulation

0 The vectors will be stored in different RAM blocks and the solution will be
demonstrated on the board

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

H=

Hands(On Training

Part Il — Quartus Prime Package (7 Days)

Day #6

e Quartus Prime: Project Management

0 Project type
0 Altera Design Store
0 Project files and folders
0 Constraint files & assignment priority
0 Project and IP management

= Project archive

= Project copy

= Revisions

= |P components

= Upgrading IP components

e Quartus Prime: IP Cores
0 Overview
IP base suite
IP Megacores
IP Catalog
IP settings
Parameterizing IP
MegaWizard Plug-In Manager and Parameter Editor

O O 0O O 0o Oo

e Quartus Prime: Compilation Process
0 Processing options

Notification center

Compilation design flows

Incremental compilation concept

Rapid recompilation

Message window

Viewing compilation results

Netlist viewers

State machine viewer

Chip planner

O O 0O 0O 0O o o o o o

Resource property editor

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

H=

Hands(On Training

e Quartus Prime Modeling Finite State Machines and Memories
0 State machine editor
0 From SMF to HDL
0 Memory editor
0 Create memory initialization file
Using memory file in design

e Quartus Prime: Assignment Editor
0 Synthesis and fitting control
0 Synthesis settings
O Fitter settings
0 Assignment editor features
0 Design assistance

e Quartus Prime: I/O Management
0 Pin planner
Assigning pin locations using Pin Planner
Pin Legend and Pin Planner views
Pin migration view
Clock/PLL views and support
Pin Planner tasks & report windows
Reserved and unused I/O pins
Show fitter placements
Back annotation
Verifying I/O assignment
I/0 planning with the BluePrint Platform Designer
Import/export via CSV
.gsf editing & scripting
Global pin settings

O OO0 OO0 O o o o o oo

e Quartus Prime: Programming the FPGA
0 Programming files
0 Programming file conversion
0 Programmer GUI (hardware setup, JTAG settings, JTAG chain
debugger tool)

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

Hands(On Training

Day #6 Labs

++ Lab #1: Pipelined Multiplier Design

Build an 8x8 multiplier using the IP catalog
Create .hex file using the Memory Editor
Create a 32x16 RAM from the IP catalog
Connect all components in VHDL top level file
Perform a full compilation

Locate information in the compilation report

O O 0O O 0O O O

Explore cross-probing capabilities by viewing logic in various windows
(RTL view, technology view, and chip planner)

+» Lab #2: Revisions & Pin Assignments

Create new revision to store new constraint settings

Make design constraints using the assignment editor

Assign 1/0 pins and perform 1/0O assignment analysis

Back annotate pin assignments to lock placements

Use the pin migration view to see the effect of device migration on I/O
assignments

O O 0 OO

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

Hands(On Training

Day #7

¢ Introduction to Timing Analysis

0 TimeQuest tool overview

0 Basic steps to using TimeQuest (generate timing netlist, enter SDC
constraints, update timing netlist, generate timing reports)

0 Using TimeQuest in Quartus Prime flow

0 Timing analysis basics (Launch Vs Latch edges, setup and hold times,
data and clock arrival time, data required time, setup and hold slack
analysis, I/0 analysis, recovery and removal, timing models)

e Timing Reports

0 Reporting in Quartus Prime Vs reporting in TimeQuest

0 Custom, summary and diagnostic reports

0 Clock transfer, datasheet, Fmax reports

0 Slack histogram report

0 Detailed slack/path report, further path analysis
e Introduction to Timing Constraints

0 Importance of constraining

0 Enter constraints

0 SDC netlist terminology

O Collections

e SDC Timing Constraints for Clocks

0 Internal and virtual clocks
Generated clocks (inverted clocks, phase shifted clocks
PLL clocks and derive_pll_clocks Altera SDC extension
Automatic clock detection and creation
Non ideal clock constraints (Jitter, latency on PCB)
Common clock path pessimism removal
Checking clock constraints
Report clocks

O O O OO0 O o

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

Hands(On Training

Day #7 Labs

++ Lab #1: TimeQuest Interface & Timing Reports Generation
0 Start the TimeQuest GUI and create timing netlist for analysis
0 Use TimeQuest reports to verify that design meets timing
0 Use the SDC file to guide the Quartus Prime fitter

¢ Lab #2: Timing Analysis: Clock Constraints
O Create SDC file for a given design
0 Create base and generated clock constraints
0 Analyze the clock constrained design

Day #8

e SDC Timing Constraints for I/0O

0 Combinational I/O interface constraints (max & min delay constraints)

0 Constraining synchronous I/0

0 1/0 timing: virtual clocks

0 Synchronous inputs constraints (setup and hold time calculations,
set_input_delay max & min)

0 Synchronous outputs constraints (set_output_delay min& max, when
to use each constraint)

0 Constrain I/0O using Tcl variables

0 Checking I/O constraints (report SDC, report unconstrained path,
report ignored constraint)

e Asynchronous Paths
0 TimeQuest & asynchronous ports
Recovery and removal
Externally registered
Internally registered
Checking asynchronous control constraints
What about truly asynchronous control inputs?

O O 0O 0o

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

H=

Hands(On Training

¢ Timing Exceptions

0 Timing exceptions types
False paths
set_clock_groups command
Verifying false paths and groups
Report exceptions
Multicycle types (setup, hold, end, start)
Case 1: opening the window
Case 2: shifting the window
Determining and applying multicycles
Multicycle path constraints
Reporting multicycles in TimeQuest
Exception priorities

O O 0O OO0 o o o o oo

Day #8 Labs

++ Lab #1: Timing Analysis: Synchronous I/O Constraints
0 Constrain synchronous input paths using SDC
0 Constrain synchronous output paths using SDC
0 Generate reports and analyze results

+* Lab #2: Timing Analysis: Timing Exceptions & Analysis

0 Constrain asynchronous input signals
0 Eliminate timing violations by using timing exceptions

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

Hands(On Training

Day #9

¢ Introduction to Synthesis

0 The synthesis process
Designing for synthesis
Hardware inference
Inference vs instantiation
Simulation vs synthesis

O O 0O O ©°

Synthesizable and non-synthesizable VHDL constructs

e Concurrent Signal Assignment Synthesis
0 Inference from declarations
Integers vs standard logic arrays
Inference from ‘Z’ value
Inference from simple concurrent assignment statements
RTL & Technology map viewers
Quartus Prime synthesis attributes
Closed feedback loop assignment
Inference from when-else statement
Inference from unaffected keyword
Inference from don’t care
Using std_match function
Inference from selected signal assignment statements
Realization of arithmetic & relational operators
Synthesis tips and guidelines

O OO0 OO0 O oo o o oo

e Sequential Statement Synthesis
Simple assignment statements
Inference from if-then-else, if-then-elsif statements

(0]
(0]
0 Inference from case statements
(0}

Inference from loop statements

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

H=

Hands(On Training

Day #9 Labs

++ Lab #1: Design Gray Code Incrementor
0 Implement binary to gray code and vice versa algorithms for any number
of bits
0 Synthesize the design and verify functionality

¢ Lab #2: Design Programmable Priority Encoder
0 Implement programmable priority encoder according to a given algorithm
0 Synthesize and verify functionality vs golden reference design

Day #10

e Sequential Statement Synthesis “Deep Dive”
Incomplete sensitivity list

Inference using signals vs variables

Latch vs flip-flop inference

Wait statements synthesis

Finite state machine synthesis

Quartus Prime state machine viewer

State machine coding style for synthesis

State machine encoding styles in Quartus Prime
Quartus Prime synthesizer attributes for state machines

O O OO0 oo o o o o

Safe state machine

¢ Inferring Common Logic Functions
0 Quartus Prime VHDL templates

DFF with secondary control signals

Incorrect control signal priority

Shift registers in logic and RAM

Counters

Single port RAM

Dual port, single clock RAM

Dual port, dual clock RAM

O O 0O O 0O 0O o

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

H=

Hands(On Training

0 Initializing memory contents using files
0 Unsupported control signals for RAM
0O ROM

Day #10 Labs

+«+ Lab #1: Priority Sorter
0 Develop an algorithm that receives 8 vectors of 8 bits each, plus 8-bit
vector of priorities
0 Clock, reset and enable are also inputs to the circuit
The output is 8 bits
0 Each rising edge of the clock one vector from the 8 input vectors is chosen

o

and sent to the output if it has the highest priority until all 8 vectors are
output

0 The priority vector first sort the ‘1’ positions and then the ‘0’ positions, so
for example if the priority vector input is, “11000101” then the output
every clock will be: vector number 7, then 6, then 2, then 0, and then
5,4,3,2 (‘1’ first then ‘0’)

O Synthesize the design

o

Add timing constraint and verify timing and functionality
0 Repeat the exercise using ROM as a container for the input vectors and
priority vector

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

H=

Hands(On Training

Day #11

e In-System Debug
0 In-System debug challenges
0 Planning
0 Techniques
= Use of pins for debug (SignalProbe)
= Internal logic analyzer (SignalTap Il)
= Use of debug logic
= External logic analyzer (LAI)
= Editing memory content (ISMCE)
= Use of soft processor for debug (Nios Il)
0 Use scenarios
= Power-up debug
= Debug of transceiver interfaces
= Reporting of system performance
= Debug of soft processors
= Device programming issues
0 In-System debug checklist

e SignalTap Il in Details
0 Design flow using the SignalTap Il Logic Analyzer
Define trigger conditions
View, analyze, and use captured data
Embedding multiple analyzers in one FPGA
Configure the SignalTap Il logic analyzer
Adding FSM state encoding registers
Specifying the sample depth
Capturing the data to a specific RAM type
Choosing the buffer acquisition mode (non-segmented versus

O O 0O OO0 o oo

segmented buffer)

Using the storage qualifier feature

Creating basic and advanced triggers

Creating a power-up trigger

Using external triggers

Using incremental compilation with the SignalTap Il
Performance and resource considerations

O O 0O 0O O o0 Oo

Run the SignalTap Il view, analyze, and used captured data

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

H=)

HandsOn Training

0 Using MATLAB MEX function to capture data
0 Remote debugging using the SignalTap

Day #11 Labs

+»+ Lab #1: Debugging with SignalTap Il Embedded Logic Analyzer
0 Create SignalTap Il and compile with a given design
0 Configure the device with the SignalTap Il instance
0 Use SignalTap Il triggers to determine the problem with a design

++ Lab #2: advanced SignalTap Il Usage
0 Experiment with storage qualification
0 Experience with a state-based trigger
0 Enable an additional instance of the SignalTap Il

j B=
|=, ,=: When innovation meets expertise...

|

H=

Hands(On Training

Day #12

e Putting it All Together

In the final project, the participant gets an almost full design in VHDL
along with a description of each block functionality.

The design consist of various blocks including:

Reset synchronizer
LFSR counter

ROM

Address generator
Two Matrix
Absolute Matrix
Maximum Matrix
PWM

))
0‘0 0‘0

)
0‘0

X3

¢

X3

¢

X3

¢

X/ X/
0‘0 0‘0

The participant needs to do the following:

1. Design the missing blocks in VHDL

2. Write a testbench for the design, simulate it and fix any bug that
doesn’t match the specifications

3. Synthesize the design in Quartus Prime and verify that you get the
required logic

4. Use TimeQuest to constrain the design with given clock frequency,
and 1/0 delays

5. Place & Route the design and analyze timing by generating various
reports. Fix any timing issues.

6. Verify the design on board with SignalTAP Il

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

H=

Hands(On Training

Part lll — Optimization Package (3 Days)

Day #13

e Multiple Clock Domains

0 Why synchronous design?
Synchronization circuits introduction
Setup and Hold time violations
Metastability effects
MTBF formula
Metastability problem
Unique characteristics of MTBF

O O O0OO0O0Oo

e Synchronizers
0 Synchronizer definition
Two FF synchronizer
Three FF synchronizer
Not recommended synchronization circuit
Proper use of a synchronizer
Unregistered signals sent across a CDC boundary
Registered signals sent across a CDC boundary
Passing a fast control signal
Wide enable signal detection
Narrow enable signal regeneration
Level alternation scheme
Synchronizing fast control signals into slow clock domains
Sampling long CDC pulse
Open loop solution and considerations
Closed loop solution and considerations
Passing multiple signals between clock domains
Capturing a bus example
Passing multiple control signals between clock domains
Synchronized pulse generation logic
Send-receive toggle-pulse generation
Multicycle path and FSM solutions
MCP with feedback
MCP with acknowledge feedback
Asynchronous FIFO
FIFO pointers implemented as binary counters vs gray code counters
Gray code incrementor design for high speed
1-deep 2-register FIFO synchronizer
Design tips

O O0OO0O0O0O0O0O0D0D00O0O0D0DO0OO0OO0ODO0OD0O0ODO0OO0O0OO0OO0OO0OO0OOo

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

H=

Hands(On Training

e Design Partitioning for Synchronization
0 Synthesis of a multiple clock system
0 Where to synchronize?
0 Guidelines for design partitioning
0 Partitioning with multi-cycle path

e Reset Synchronizers

0 Synchronous and asynchronous reset differences
When to use synchronous and asynchronous reset
Asynchronous reset problem
Reset synchronizer
Non-coordinated reset removal
Sequenced coordination of reset removal

O OO O0OOo

e Metastability Analysis in Quartus Prime

0 Managing metastability with Quartus Prime
Metastability analysis in Quartus Prime
Identifying synchronizers for metastability analysis
Timing constraints & metastability analysis
Metastability & MTBF reporting
Design example & analysis
MTBF reporting in TimeQuest
Synchronizer data toggle rate in MTBF calculation
False path reporting in TimeQuest
MTBF optimization
Controlling MTBF optimization

O O0OO0OO0OO0OO0OO0OO0OO0ODOo

Day #13 Labs

¢ Lab #1: Design Handshake Synchronization Protocol
0 Implement the handshake protocol in VHDL according to a given
specification
Simulate your design
Compile the design in Quartus Prime
Analyze MTBF
Optimize MTBF with Quartus Prime optimization techniques

O O O O

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

Hands(On Training

Day #14

¢ Introduction to high productivity
0 Project Management Phases
0 Project goals challenges
= Resources utilization

= |/Otiming

= |nter-chip timing

= Debug

= Power consumption
= Reuse

= Third party IP
= Engineering resources
= Communication between teams
= Design tools version
0 Reverse engineering and security

¢ Understanding Resource Utilization Report
0 Synthesis resource utilization report
0 Utilization by entity report
O Fitter resource utilization report
0 Resource utilization in terms of ALMs
= ALMs needed
= ALMs used in final placement
= Estimate of ALMs recoverable by dense packing
= Estimate of ALMs unavailable
= ALMs used for memory
0 Resource utilization challenges
0 Resource utilization optimization reports
= Registers removed during synthesis
= General register statistics
= Inverted register statistics
= Synthesis attributes effect on optimization reports
Resource utilization use cases
Resource optimization advisor
I/O assignment analysis
Using I/O Flip Flops

O O O O

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

Hands(On Training

Using useioff attribute

Optimize source code guidelines

Optimize synthesis for area globally

Optimize synthesis for area using the assignment editor
When to use Restructure multiplexers optimization
When to use Register packing optimization

Preserve register and keep logic attributes

Maximum fanout attribute

Remove fitter constraints

Viewing routing congestion

Flatten the hierarchy during synthesis

Retargeting memory blocks

How to use efficiently physical synthesis to reduce area
Retargeting/balancing DSP blocks

Limiting the number of DSP blocks

FSM processing and safe FSM

O O OO OO O OO0 O OoOOoOOoOOooo

e Designing for Best Area Utilization
0 Derivation of efficient HDL description
Resource sharing definition
Operator sharing
Operator sharing examples
Operator sharing in Quartus Prime
Automatic operator sharing limitation
Balancing operators
Multipliers balancing
Counter efficient design
Functionality sharing definition

O OO0 O 0O O o o o o

Functionality sharing examples

e Reducing Compilation Time
0 Compilation time challenges
Compilation time advisor
Rapid recompilation
Smart compilation

(6]
(6]
(0]
0 Parallel compilation with multicore host
0 Incremental compilation concept

0 Tips to reduce synthesis time

0 Tips to reduce placement time

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :9 052-5816791 :U 4410801 0" 803.7.71,9 777120 M

H=

Hands(On Training

0 Tips to reduce routing time

0 Tips to reduce static timing analysis time

Day #14 Labs

+»+ Lab #1 : Apply resource optimization techniques to achieve
the smallest design area

¢ Lab #2 : Apply Synthesis Attributes to Control Synthesis
Results and Reduce Compilation Time

Day #15
e Pipelining
0 Pipelining concept
Latency & throughput

O O O O 0O O O

Pipelining considerations

Pipeline balancing stages
Pipeline effectiveness calculations
Complex pipeline circuits design

Timing and area analysis of a pipelined circuit
Retiming and physical synthesis techniques

e Synthesis of Arithmetic Circuits
0 FPGAs architecture arithmetic support

LUT modes
Built in adders
DSP blocks

0 Adders Design

Basic adders

Carry chain adders

Carry skip adders

Carry select adders
Carry look-ahead adders

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.il

HandsOnTraining.co.il 077-4702742 19 052-5816791 U0 441080102 803.7.1,9 71120 'NM7

Hands(On Training

= Prefix adders
= Multi-operand adders
= Long operand adders
= Carry save adders
= QOptimization of adders
0 Counters Design
= Parallel counters
= Up counters versus down counters
= Ring counters
= Johnson counters
= LFSR counters
Subtractors and adder-subtractors
Sign magnitude adders and subtractors
Termination detection

O ©0 o o

Multipliers Design
= Basic multiplier
= Sequential multiplier
= Ripple-carry multiplier
= Carry-save multiplier
= Multipliers based on multi-operand adders
= Booth algorithm multipliers

Day #15 Labs

++ LAB #1: Use pipeline technique to increase complex circuit
performance
++» LAB #2: Optimize arithmetic circuit performance

VWhen innovation meets expertise...

ContactUs@HandsOnTraining.co.l HandsOnTraining.co.il 077-4702742 :@ 052-5816791 U 4410801 0"2 803.7.1,9 01301 'N

