
 

 

Advanced Verilog for High Productivity   

 

Course Description  

This course provides all necessary theoretical and practical know-how to write synthesizable 
Verilog code high productivity in an efficient way. 

The course goes into great depth and teaches efficient methods for writing Verilog code in a 
way that produces the precise digital circuit for various constraints like high frequency, low 
power, and minimal area. 

The course starts by introducing power consumption challenges and how to write efficient 
Verilog code in order to decrease power in ASIC designs, including resource sharing, 
functionality sharing, state machine encoding, minimizing transitions on bus, clock gating, 
how to control counters, retiming and much more. 

In addition, the course focuses on writing efficient code to save area, alternative algorithms 
for arithmetic circuits including counters, adders, multipliers and comparators. 

For high frequency design, the training goes into pipeline technique including efficiency, 
balancing, advantages and disadvantages, skew and high fanout issues. 

The course combines 50% theory with 50% practical work in every meeting. The practical 
labs cover all the theory and also include practical digital design. 

 

Course Duration  

3 days  

Goals  

1. Understand how efficient coding can decrease power consumption 
2. Design high-speed arithmetic circuits  
3. Design efficient circuits for minimal area or high frequency 
4. Introduce System Verilog features for synthesis 

 
 
 
 
 



 

 

Intended Users 

Hardware engineers who develop ASICs and would like to enhance their skills, in order to 
understand synthesis limitations, write efficient coding style for low power, low area or high 
frequency.  

Previous Knowledge 

 Verilog 
 Digital Design 

Course Material 

1. Course book  
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