

Advanced Verilog for High Productivity

Course Description

This course provides all necessary theoretical and practical know-how to write synthesizable
Verilog code high productivity in an efficient way.

The course goes into great depth and teaches efficient methods for writing Verilog code in a
way that produces the precise digital circuit for various constraints like high frequency, low
power, and minimal area.

The course starts by introducing power consumption challenges and how to write efficient
Verilog code in order to decrease power in ASIC designs, including resource sharing,
functionality sharing, state machine encoding, minimizing transitions on bus, clock gating,
how to control counters, retiming and much more.

In addition, the course focuses on writing efficient code to save area, alternative algorithms
for arithmetic circuits including counters, adders, multipliers and comparators.

For high frequency design, the training goes into pipeline technique including efficiency,
balancing, advantages and disadvantages, skew and high fanout issues.

The course combines 50% theory with 50% practical work in every meeting. The practical
labs cover all the theory and also include practical digital design.

Course Duration

3 days

Goals

1. Understand how efficient coding can decrease power consumption
2. Design high-speed arithmetic circuits
3. Design efficient circuits for minimal area or high frequency
4. Introduce System Verilog features for synthesis

Intended Users

Hardware engineers who develop ASICs and would like to enhance their skills, in order to
understand synthesis limitations, write efficient coding style for low power, low area or high
frequency.

Previous Knowledge

 Verilog
 Digital Design

Course Material

1. Course book

Table of Contents

Day #1

 Introduction to Low Power Design
o Power consumption review
o Domains of low power design
o Low power design at RTL and gate levels

 Low Power Design Techniques
o Signal coding

 One hot
 Gray
 Bus inversion
 Hamming distance
 Sign magnitude representation
 FSM encoding

o Clock gating
 Power/energy optimization space
 Reducing active power at system level
 Clock gating
 Circuit-level activity encoding
 Eliminate glitches
 Clock gating through FSM

o Double-edge clocking
 Energy consumption ratio
 Low power optimization

o Glitch reduction
 Glitch propagation
 Glitch reduction with FF
 Glitch reduction with multi-phase clocking
 Glitch reduction with delay balancing
 Glitch reduction with SOP

o Operand isolation
 Blocking arithmetic data path
 Decoder example
 Control signal gating

o Pre-computation
o Concurrency insertion

 Concurrency vs redundancy
 Concurrency insertion techniques

o Parallelism & pipelining
o Algorithm level

 Reordering inputs
 Apply different algorithms

 Resource & Functionality Sharing
o Derivation of efficient HDL description
o Resource sharing definition
o Operator sharing using Verilog description
o Balancing operators
o Multipliers balancing
o Counter efficient design
o Functionality sharing definition
o Analyzing area and frequency of various design examples

 Pipelining
o Pipelining concept
o Latency & throughput
o Pipelining considerations
o Pipeline balancing stages
o Pipeline effectiveness calculations
o Complex pipeline circuits design
o Timing and area analysis of a pipelined circuit
o Retiming and physical synthesis techniques

Day #2

 Synthesis of Arithmetic Circuits
o Adders Design

 Basic adders
 Carry chain adders
 Carry skip adders
 Carry select adders
 Carry look-ahead adders
 Carry save adders
 Optimization of adders

o Counters Design
 Parallel counters
 Up counters versus down counters
 Ring counters
 Johnson counters
 Pre-scaled counters
 LFSR counters

o Subtractors and adder-subtractors
o Multipliers Design

 Basic multiplier
 Radix-4 multipliers
 Booth algorithm multipliers

 Area versus Frequency Tradeoff
o Functionality sharing for arithmetic circuits methodology
o Sign magnitude adders
o Adders-subtractors optimizations
o Sign magnitude comparators
o Absolute circuits
o Combinational functionality sharing

 Advanced Finite State Machines

o Unidirectional and bi-directional complex state machines
o Mealy versus Moore design considerations
o State machine encoding

 Advantages of each method and its Verilog implementation

 One-hot
 Two-hot
 Gray-code
 Johnson
 Sequential
 Random
 User defined

o Resource sharing of FSM
o Area speed and device resource utilization
o Optimizations of FSM

 Outputs decoded in parallel output registers
 Outputs decoded within state bits
 One hot versus gray code encoding style performance
 Using custom encoding styles

o High reliability FSM
 Definition of fault tolerant design
 Using attributes
 Using constants
 Handling illegal states
 FSM SEU definition
 Applying hamming algorithm for error detection and

correction
 Using “safe” attribute

Day #3

 Introduction to SystemVerilog for Synthesis
o Verilog vs SystemVerilog: standards review
o New SystemVerilog features

 New data type: “logic”
 New Always blocks
 FSM enumerated type
 $log2c() function
 Two-dimensional port declaration

 Synthesizing SystemVerilog
o Data types synthesis

 Value sets
 Net types
 Variable types
 Packed arrays
 Unpacked arrays
 Copying arrays
 Passing arrays through module ports and to tasks/functions
 Array query system functions for synthesis
 Enumerated types
 Structures
 Unions
 Type definitions

o Parameterized models
o Packages and $unit
o Always_comb, always_ff, always_latch
o Case equality operators (==?, !=?)
o Set membership operator (inside)
o Streaming operators
o Increment/decrement and assignment operators
o Casting
o Case…inside
o Unique, unique0, and priority decisions
o Do…while new loop for synthesis
o Multiple loop control variables in for loop
o Break and continue

o Foreach loop
o Tasks and functions enhancements

 Void functions
 Formal arguments default to input
 Arrays, structures, unions, and user defined types as formal

arguments
 Pass by name in calls
 Using return keyword
 Parameterized task/function arguments using static classes

o Relaxed Module ports rules
o Interfaces keyword
o Ending names
o `begin_keywords and `end_keywords
o Vector fill tokens
o Constant variable
o Timeunit and timeprecision
o Expression size functions ($clog2, $bits)
o Assertions

